Planning transport infrastructure: perspectives, challenges and approaches

Pierluigi Coppola
Università di Roma Tor Vergata

Patras (Greece), 20 September 2019
1. perspectives
<table>
<thead>
<tr>
<th>Drivers of Change</th>
<th>TRANSPORT EXTERNALITIES</th>
<th>CULTURAL AND SOCIO-ECONOMIC</th>
<th>TRAVELLERS PREFERENCES AND BEHAVIOUR</th>
<th>INNOVATIVE TECHNOLOGIES</th>
</tr>
</thead>
</table>

- **TRAFFIC CONGESTION**: every year nearly 100 billion euros, or 1% of the EU's GDP, are lost to the European economy as a result of the congestion

- **ROAD SAFETY**: one in three fatal accidents now happen in urban areas, and it is the most vulnerable people, namely pedestrians and cyclists, who are the main victims

- **AIR QUALITY AND GREENHOUSE GAS EMISSIONS**: urban traffic is responsible for 40% of CO2 emissions and 70% of emissions of other pollutants arising from road transport
DRIVERS OF CHANGE

INDIVIDUAL OWNERSHIP

COLLABORATIVE CONSUMPTION

CULTURAL AND SOCIO-ECONOMIC

Demographic growth
Urbanisation
Population ageing
Sharing economy
Digital-oriented lifestyle

- DEMOGRAPHIC GROWTH: an overall increase in the world population is expected in the coming years. However, this phenomenon follows very different trends from region to region (actually Europe will suffer a slight decline in population)

- URBANISATION: at present 55% of the World’s population lives in urban areas; in 1950 the share was at 30% and today’s predictions estimate an increase up to 68% by 2050

- POPULATION AGEING: in 2050 the global population aged 60 years or over will be twice as much as today’s (in absolute terms)
DRIVERS OF CHANGE

Sharing travel experiences

- e.g. BlaBlaCar
- waze

USER PREFERENCES AND TRAVEL BEHAVIOUR

- Increasing travel demand and new trip-chain patterns
- Multimodal trips
- Service Customisation
 - Door-to-door
 - On-Demand
- Shared mobility

more complex trip chains
• Electro-mobility is seen as a key component of the agenda for sustainable mobility
• By 2050, Internal Combustion Engine Vehicles (ICEVs) are expected to be banned from cities, giving way to Electric Vehicles (EVs), i.e. **Plug-in Hybrid Electric Vehicles** (PHEVs) and **Battery Electric Vehicles** (BEVs)
• The use of **renewable energy sources** in the electricity production mix is important towards decarbonisation of the whole cycle
DRIVERS OF CHANGE

Connected Vehicles (CVs): vehicles equipped with advanced communication technologies that allow the exchange of information between the various elements of the transportation system.

INNOVATIVE TECHNOLOGIES
- Electrification
- Connectivity
- Automation
- Digital Infrastructure (e.g. Smart road)
DRIVERS OF CHANGE

Digital Infrastructure: monitoring traffic condition, exchanging information among users and service providers, increasing road safety and enhancing driving comfort.

INNOVATIVE TECHNOLOGIES

- Electrification
- Connectivity
- Automation
- Digital Infrastructure (e.g., Smart road)
DRIVERS OF CHANGE

TRANSPORT EXTERNALITIES
- Traffic congestion
- Road safety
- Air quality (PM10, PM2.5, NOx, O₃, C₆H₆)
- Climate-altering gases (CO₂, N₂O, CH₄, HFC, PFC, SF₆)

CULTURAL AND SOCIO-ECONOMIC
- Demographic growth
- Urbanisation
- Population ageing
- Sharing economy
- Digital-oriented lifestyle

TRAVELLERS’ PREFERENCES AND BEHAVIOUR
- Increasing travel demand and new trip-chain patterns
- Multimodal trips
- Service Customisation
 - Door-to-door
 - On-Demand
- Shared mobility

INNOVATIVE TECHNOLOGIES
- Electrification
- Connectivity
- Automation
- Digital Infrastructure (e.g. Smart road)

- Demand vol.
- Modal share
- Needs
 - service
 - Infrastructure
- Consumptions
- ...
EXAMPLE: future mobility solutions

- Public Transport
- Shared Mobility
- AMoD

MaaS

- EV
- CV
- AV

E-CAV

- Smart Roads
- Digital Infrastructure
EXAMPLE: E-CAVs deployment - factors of uncertainty

• Supply-side factors
 - vehicles performances in promiscuous traffic situations,
 - vehicle sensors to respond to unexpected situations
 - Costs and maintenance needs
 - ...

• Demand-side factors
 - user acceptance
 - users’ willingness to pay
 - ...

• Governance factors
 - Liability
 - Regulation
 - ...

2. challenges
SOME POLICY CHALLENGES

• To better plan investment
 - Improve transportation system adaptability

• To anticipate the impacts of technological disruptions

• To stop the growth of transport CO2 emissions
 - Avoid un-necessary demand
 - improve transport efficiency
Challenges for planners

How to take the right decisions about investment for the future?

How to drive the change towards sustainability?

What planning instruments?
3. Assessment tools
Integral assessment: the three spheres of sustainability

- **Social**
 - Standard of Living
 - Education
 - Community
 - Equal Opportunity

- **Environmental**
 - Natural Resource Use
 - Environmental Management
 - Pollution Prevention
 - (air, water, land, waste)

- **Economic**
 - Profit
 - Cost Savings
 - Economic Growth
 - Research & Development

Sustainability

![Diagram showing the three spheres of sustainability](image)

- **Social-Environmental**
 - Environmental Justice
 - Natural Resources Stewardship
 - Locally & Globally

- **Environmental-Economic**
 - Energy Efficiency
 - Subsidies / Incentives for use of Natural Resources

Adopted from the 2002 University of Michigan Sustainability Assessment
Energy transition

• **Electro-mobility** is seen as a key component of the agenda for sustainable mobility: by 2050, Internal Combustion Engine Vehicles (ICEVs) are expected to be banned from cities, giving way to Electric Vehicles (EVs)

• insufficient advances in **Air and Sea transport**

• electricity or hydrogen **zero-carbon footprint** will require zero–carbon generation of electricity and hydrogen power
Strong growth in freight transport

Freight volumes may triple between 2015 and 2050

- modal share of Sea may further increase from current 70% to future 74%
- growth rate of Air is expected higher than others mode

Co2 emissions are projected to growth by 225% by 2050

Source: ITF Outlook 2019
TRANSPORT AND LAND-USE

• Territorial Impact Assessment (TIA)
• Transit Oriented Development (TOD)
• Accessibility Planning

Is there a problem of mobility?
or:
Is there a problem of accessibility?
WIDER ECONOMIC IMPACTS

• Jobs Productivity and Labor Force participation
 effects arising from markets enlargement

• Competitiveness
 effects arising from markets competition, which may be positive but also negative, the weaker may succumb
• **Transport Equity Assessment**

 methods with the potential to shape transport decision-making processes, thus allowing for the adoption of more equitable transport solutions

 ✓ *Efficientarism vs. sufficientarism*

• **Liability issues**

 in the era of the digital revolution and self-learning systems, human-machine interaction raises new ethical questions:

 ✓ *Principles and priorities*
 ✓ *Data storage, protection and sovereignty*
CONCLUSIONS

• Vision
In the long term, a widespread adoption of new technologies (e.g. E-CAV) will enable Innovative Mobility Solutions (e.g. vehicle sharing, AMoD, ...) and new roles for transport planners/operators/...

• Uncertainty
Policies must be anticipatory despite uncertainty of the future, in order to get greatest benefits in terms of environmental, social and economic sustainability
CONCLUSIONS

- **Holistic**

 Integral assessment tool for the simulation of future scenarios is key to support correct investment decision and to design and implement mobility policies driving change towards sustainability

- **Participatory**

 New form of planning approaches (including bottom-up exploration of policies) could represent an opportunity for more effective planning processes and mobility solutions
Thanks for attention!

Pierluigi Coppola

coppola@ing.uniroma2.it